Crystallographic Studies on Metal-Nucleotide Base Complexes. VII. Di-9-methylguaninetriaquocopper(II) Sulphate Trihydrate

By Einar Sletten and Nuell Fløgstad
Department of Chemistry, University of Bergen, 5000 Bergen, Norway

(Received 20 June 1975; accepted 26 June 1975)

Abstract

$\left[\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{5} \mathrm{O}\right)_{2} \mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \mathrm{SO}_{4} .3 \mathrm{H}_{2} \mathrm{O}$ is monoclinic, space group $P 2_{1} / c$, with $a=11 \cdot 8733, b=6 \cdot 8057, c=$ $28.4534 \AA, \beta=103.423^{\circ}, Z=4$. Most of the crystals are twinned and the single crystal used for data collection was very small. The structure determination is based on diffractometer data ($\mathrm{Cu} \mathrm{K} \alpha$ radiation) and the structure was refined by full-matrix least-squares calculations to a final R of 0.078 . The Cu ion is octahedrally surrounded, the coordination spheres being linked in an infinite chain by one of the coordinated water molecules. Two guanine molecules, binding Cu through $\mathrm{N}(7)$, are arranged in a syn configuration with a water molecule in the coordination sphere bridging the two carbonyl groups via hydrogen bonds. The sulphate ion forms two hydrogen bonds to one of the guanine ligands. The 'bite' distance between the two donor \mathbf{H} atoms at $\mathrm{N}(1)$ and the amino group is compatible with the distance between the acceptor atoms in the sulphate ion. The ability of guanine to form a di-hydrogen bond to certain anions is not paralleled by any other purines and pyrimidines.

Introduction

$\mathrm{Cu}^{\mathrm{II}}$ complexes of neutral nucleoside analogues of hypoxanthine (Sletten, 1974) and adenine (Sletten \& Thorstensen, 1974; Sletten \& Ruud, 1975) have been examined by X-ray crystallography. In the present paper the corresponding complex of 9-methylguanine will be described. In AdCuSO_{4} the anion is coordinated to Cu^{2+}, while in $\mathrm{Ad}_{2} \mathrm{CuCl}_{2}$ the anion forms a strong H -bond to adenine and has no contact with Cu^{2+}. The H-bond donor properties of the purines together with steric requirements may determine whether the anion will enter the coordination sphere or interact directly with the purine ring. The anions may thus have the ability to disrupt the complementary base-pairing scheme in DNA, producing denaturation. Usually, the anionic effect has not been dealt with explicitly in investigations of metal-nucleic acid interaction, even though several anions have been used in these studies, e.g. $\mathrm{NO}_{3}^{-}, \mathrm{Cl}^{-}, \mathrm{ClO}_{4}^{-}, \mathrm{SO}_{4}^{2-}$. It has been found that the denaturing power of anions on DNA follows the order $\mathrm{Cl}^{-}, \mathrm{Br}^{-}<\mathrm{CH}_{3} \mathrm{COO}^{-}<\mathrm{I}^{-}<$ $\mathrm{ClO}_{4}^{-}<\mathrm{CNS}^{-}$(Hamaguchi \& Geiduschek, 1962). Eichhorn \& Shin (1968) have proposed a corresponding order for metal ions; $\mathrm{Mg}^{\mathrm{II}}<\mathrm{Co}^{\mathrm{II}}<\mathrm{Ni}^{\mathrm{II}}<\mathrm{Mn}^{\mathrm{II}}<\mathrm{Zn}^{\mathrm{II}}$ $<\mathrm{Cd}^{\text {II }}<\mathrm{Cu}^{\text {II }}$. In this context it is important to be able to distinguish between the effect of anions and the effect of metal ions on DNA. Thus the investigation of metal-nucleic acid interaction should also include variation of the anionic environment.

Experimental

Equimolar amounts ($10^{-3} \mathrm{~mol}$) of 9-methylguanine and 1-methylcytidine were dissolved in $2 \mathrm{ml} 1 \mathrm{NH}_{2} \mathrm{SO}_{4}$,
and $4 \times 10^{-3} \mathrm{~mol} \mathrm{CuSO}_{4}$ in $2 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ was added. The mixture was heated and the $p \mathrm{H}$ adjusted to 3 by the addition of $1 N \mathrm{NaOH}$. A green precipitate was obtained and washed with methanol. The compound was dissolved in 1:1 dioxane-water and after 24 h at room temperature crystalline plates appeared. The complex synthesized might have guanine, cytidine, or both guanine and cytidine ligands, depending on the stability constants and the solubility of the different species.

The space group is $P 2_{1} / c$. Most of the crystals were twinned, the twin plane being (100). Only minute single crystals could be found and the one used for data collection, $0.01 \times 0.03 \times 0.37 \mathrm{~mm}$, was mounted along \mathbf{b}. Cell dimensions were determined by measuring 2θ of the $K \alpha_{1}$ peak of 16 reflexions by an ω-scan technique (Maartmann-Moe, 1974). The experimental procedure is described elsewhere (Sletten, 1974). Within the sphere of reflexion limited at $\sin \theta / \lambda=0 \cdot 56,3299$ unique reflexions were recorded with $\mathrm{Cu} K \alpha$ radiation. Of these, 742 were less than the threshold value (Sletten, 1974).

Crystal data

$\left[\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{5} \mathrm{O}\right)_{2} \mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \mathrm{SO}_{4} .3 \mathrm{H}_{2} \mathrm{O}$, F.W. $598 \cdot 0$, Space group: $P 2_{1} / c, Z=4, a=11.8733$ (9), $b=6.8057$ (7), $c=$ 28.4534 (16) $\AA, \beta=103.423$ (7) ${ }^{\circ}, V=2263.4$ (3) \AA^{3}. $D_{m}=1.80(3), D_{x}=1.81(2) \mathrm{g} \mathrm{cm}^{-3} . \lambda(\mathrm{CuK} \mathrm{\alpha})=1.5418$ $\AA, \mu=30 \cdot 1 \mathrm{~cm}^{-1}$.

The structure was solved by the heavy-atom method and the refinement by full-matrix least squares proceeded satisfactorily for all crystallographically ordered non-hydrogen atoms. However, some of the crystal water is disordered. From peaks in the disordered region four different sites were allocated fractional O atoms and the occupancy factors were refined, keep-
ing the isotropic thermal parameters fixed at the average value for the ordered crystal water. The data, not extending beyond $\sin \theta / \lambda=0 \cdot 56$, did not allow simultaneous refinement of thermal and occupancy parameters.

All H atoms attached to ordered atoms were located in a difference map. In the subsequent refinement some of the water H atoms moved to unreasonable positions, and so were fixed from the difference map. The least-squares refinement converged at a relatively high $R=\sum| | F_{o}\left|-\left|F_{c}\right|\right| / \sum\left|F_{o}\right|=0 \cdot 078$, partly due to poor quality of the data from the minute crystal and partly due to the inadequate model for the disordered water molecules.

Atomic parameters are listed in Table 1.* Scattering factors and computer programs are mentioned elsewhere (Sletten, 1974). All drawings were made by ORTEP (Johnson, 1970).

[^0]
Results and discussion

Coordination geometry

The molecular dimensions of the complex and the sulphate ion are shown in Fig. 1 and Table 2. Cu is octahedrally surrounded by two guanine $N(7)$ atoms and two water molecules $[O(6), O(7)]$ in the equatorial plane and two water molecules in axial positions [O(5), $\left.\mathrm{O}(7)^{\prime}\right]$. The complex units are linked together via $\mathrm{O}(7)$ forming an infinite chain running along the screw axis [Fig. 2(a)]. The guanine ligands are arranged in a syn configuration with water molecule $O(7)$ serving as an H -bond bridge between the carbonyl groups. The array $\mathrm{N}(7 A)-\mathrm{Cu}-\mathrm{N}(7 B)$ is almost linear, the angle at Cu being $176 \cdot 7^{\circ}$. Both guanine ligands are tilted so as to accommodate the bridging water molecule, the angles between $\mathrm{Cu}-\mathrm{N}(7)$ and ring planes A and B being $15 \cdot 6^{\circ}$ and $15 \cdot 9^{\circ}$, respectively [Fig. 2(b)].
In the chloro complex of 9 -methylhypoxanthine the purine ligands are arranged anti and the intra-complex hydrogen bond is found between the carbonyl group and a water molecule in equatorial position. The axial positions are occupied by Cl^{-}ions (Sletten, 1974). The corresponding sulphato complex is now

Table 1. The final atomic parameters
(a) Non-hydrogen atoms (temperature parameters $\times 10^{3}$). Standard deviations are in parentheses. Anisotropic temperature factor $=\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+U_{22} k^{2} b^{* 2}+U_{33} l^{2} c^{* 2}+2 U_{12} h k a^{*} b^{*}+2 U_{23} k l b^{*} c^{*}+2 U_{13} h l a^{*} c^{*}\right)\right]$.

	X/a	Y / b	Z/c	U_{11}	U_{22}	U_{33}	U_{12}	U_{23}	U_{13}
Cu	0.86346 (9)	$0 \cdot 20613$ (15)	$0 \cdot 23657$ (3)	$45 \cdot 4$ (6)	$38 \cdot 8$ (6)	$27 \cdot 2$ (4)	$4 \cdot 9$ (6)	0.8 (6)	13.4 (4)
S	$0 \cdot 45521$ (15)	$0 \cdot 0828$ (3)	$0 \cdot 11562$ (7)	18.6(10)	$30 \cdot 1$ (13)	$26 \cdot 7$ (10)	$-0 \cdot 2$ (10)	$0 \cdot 7$ (10)	$7 \cdot 0$ (9)
O(6A)	$0 \cdot 1417$ (4)	$0 \cdot 2292$ (7)	$0 \cdot 19729$ (14)	27 (3)	36 (3)	10 (2)	1 (3)	-8(2)	1 (2)
O(6B)	$0 \cdot 1341$ (4)	$0 \cdot 2225$ (8)	$0 \cdot 32645$ (15)	29 (3)	38 (3)	17 (2)	2 (3)	4 (3)	13 (2)
O(1)	$0 \cdot 3684$ (4)	0.0762 (9)	$0 \cdot 14512$ (17)	19 (3)	73 (5)	30 (3)	3 (3)	-3(3)	6 (2)
O(2)	0.3963 (4)	0.0528 (9)	0.06484 (17)	39 (3)	69 (4)	24 (3)	2 (3)	0 (3)	5 (3)
$\mathrm{O}(3)$	0.4563 (4)	0.4312 (8)	$0 \cdot 36795$ (17)	28 (3)	32 (3)	40 (3)	-6(3)	1 (3)	2 (3)
O(4)	0.5139 (4)	0.2751 (8)	0.12259 (22)	29 (3)	31 (4)	95 (5)	2 (3)	4 (4)	13 (3)
O(5)	$0 \cdot 3049$ (5)	0.5070 (11)	$0 \cdot 27788$ (24)	33 (4)	63 (5)	22 (4)	8 (4)	1 (4)	1 (3)
$\mathrm{O}(6)$	$0 \cdot 7663$ (4)	0.4436 (8)	$0 \cdot 22319$ (17)	13 (3)	53 (4)	39 (3)	16 (3)	3 (3)	-1 (2)
O(7)	0.0471 (4)	0.4525 (7)	$0 \cdot 25356$ (15)	21 (3)	35 (3)	19 (3)	-3 (3)	2 (2)	7 (2)
$\mathrm{O}(8)$	0.3836 (7)	0.4055 (13)	0.00851 (28)	51 (5)	72 (6)	40 (4)	17 (4)	16 (4)	20 (4)
$\mathrm{O}(10)$	$0 \cdot 3768$ (6)	$0 \cdot 1030$ (13)	$0 \cdot 40873$ (27)	47 (4)	38 (5)	54 (5)	7 (4)	16 (4)	26 (4)
$\mathrm{N}(1 A)$	$0 \cdot 1349$ (5)	$0 \cdot 1216$ (9)	$0 \cdot 12133$ (19)	10 (3)	25 (4)	17 (3)	-2 (3)	-2 (3)	3 (3)
$\mathrm{N}(2 A)$	$0 \cdot 1469$ (6)	0.0246 (11)	0.04537 (23)	25 (4)	53 (5)	15 (4)	-1(4)	-13(4)	8 (3)
$\mathrm{N}(3 A)$	0.9648 (4)	0.0692 (9)	0.05969 (18)	20 (3)	25 (4)	11 (3)	$-1(3)$	-3(3)	9 (3)
$\mathrm{N}(7 A)$	0.8714 (4)	$0 \cdot 2034$ (9)	$0 \cdot 16658$ (18)	14 (3)	20 (3)	20 (3)	3 (3)	1 (3)	6 (3)
$\mathrm{N}(9 A)$	0.7941 (4)	$0 \cdot 1304$ (8)	0.08962 (17)	18 (3)	30 (4)	10 (3)	2 (3)	-1 (3)	3 (2)
$\mathrm{N}(1 B)$	$0 \cdot 1319$ (5)	$0 \cdot 1224$ (9)	$0 \cdot 40236$ (19)	24 (4)	22 (4)	12 (3)	-6 (3)	-2 (3)	1 (3)
$\mathrm{N}(2 B)$	$0 \cdot 1433$ (7)	0.0234 (11)	$0 \cdot 48089$ (23)	23 (4)	46 (5)	17 (4)	1 (4)	2 (3)	4 (3)
$\mathrm{N}(3 B)$	0.9630 (5)	0.0711 (9)	0.43196 (18)	24 (3)	26 (5)	13 (3)	3 (3)	2 (3)	5 (3)
$\mathrm{N}(7 B)$	0.8655 (4)	$0 \cdot 2062$ (9)	$0 \cdot 30776$ (17)	20 (3)	15 (3)	18 (3)	-3 (3)	-1(3)	6 (3)
$\mathrm{N}(9 B)$	0.7911 (5)	$0 \cdot 1320$ (8)	$0 \cdot 37003$ (18)	23 (3)	23 (4)	17 (3)	-5 (3)	2 (3)	10 (3)
$\mathrm{C}(2 A)$	0.0789 (6)	0.0735 (10)	0.07491 (22)	22 (4)	16 (4)	13 (4)	-2(3)	$-1(3)$	6 (3)
$\mathrm{C}(4 A)$	0.9113 (5)	$0 \cdot 1173$ (10)	$0 \cdot 09558$ (22)	16 (4)	20 (4)	15 (4)	-2 (3)	-2 (3)	2 (3)
C(5A)	0.9598 (6)	$0 \cdot 1641$ (10)	$0 \cdot 14267$ (22)	26 (4)	17 (5)	15 (3)	1 (3)	-5 (3)	11 (3)
C(6A)	0.0804 (5)	$0 \cdot 1750$ (10)	$0 \cdot 15781$ (22)	14 (4)	22 (4)	14 (4)	7 (3)	3 (3)	6 (3)
$\mathrm{C}(8 A)$	0.7754 (6)	$0 \cdot 1814$ (11)	$0 \cdot 13341$ (23)	17 (4)	19 (5)	26 (4)	5 (4)	1 (3)	9 (3)
$\mathrm{C}(9 A)$	$0 \cdot 7054$ (8)	0.0926 (17)	0.04600 (30)	20 (5)	53 (7)	26 (5)	-10 (5)	-5 (5)	5 (4)
$\mathrm{C}(2 B)$	0.0758 (6)	0.0729 (11)	$0 \cdot 43905$ (23)	32 (4)	22 (4)	13 (4)	-3 (3)	1 (3)	5 (3)
$\mathrm{C}(4 B)$	0.9017 (5)	$0 \cdot 1205$ (10)	$0 \cdot 38715$ (22)	17 (4)	14 (4)	16 (4)	-5 (3)	-1 (3)	6 (3)
C(5B)	$0 \cdot 9546$ (6)	$0 \cdot 1669$ (10)	$0 \cdot 34806$ (22)	26 (4)	12 (4)	11 (3)	3 (3)	2 (3)	2 (3)
$\mathrm{C}(6 B)$	0.0750 (6)	$0 \cdot 1744$ (10)	$0 \cdot 35586$ (22)	24 (4)	18 (4)	15 (3)	6 (3)	1 (3)	2 (3)
$\mathrm{C}(8 \mathrm{~B})$	0.7702 (6)	$0 \cdot 1808$ (12)	$0 \cdot 32263$ (23)	22 (4)	30 (5)	15 (4)	2 (4)	2 (4)	-1 (3)
C(9B)	0.7034 (8)	0.0871 (17)	$0 \cdot 3981$ (3)	28 (5)	52 (7)	32 (5)	-10 (5)	1 (5)	15 (5)

Table 1 (cont.)

(b) Oxygen ($U=0.05$) and hydrogen atoms. Isotropic temperature factor $=\exp \left[-8 \pi^{2} U \sin ^{2} \theta / \lambda^{2}\right]\left(U \times 10^{3}\right)$.

	X/a	Y / b	Z/c	Occupancy
O(91)	$0 \cdot 4321$ (10)	0.2931 (20)	$0 \cdot 2291$ (4)	$0 \cdot 501$ (10)
$\mathrm{O}(92)$	$0 \cdot 4250$ (28)	-0.014 (7)	$0 \cdot 2466$ (11)	$0 \cdot 212$ (19)
O(93)	0.4999 (11)	0.4537 (20)	0.2133 (5)	$0 \cdot 463$ (10)
O(94)	$0 \cdot 4017$ (13)	$0 \cdot 098$ (3)	$0 \cdot 2420$ (5)	$0 \cdot 454$ (19)
	X/a	Y / b	Z/c	U
$\mathrm{H}(1 /$)	0.211 (5)	$0 \cdot 125$ (8)	$0 \cdot 1296$ (19)) 6 (16)
$\mathrm{H}(21 A)$	$0 \cdot 242$ (6)	0.033 (10)	0.0545 (23)	33 (20)
$\mathrm{H}(22 A)$	0.877 (6)	$0 \cdot 495$ (10)	0.4795 (23)	13(23)
$\mathrm{H}(8 A)$	0.703 (4)	$0 \cdot 208$ (8)	$0 \cdot 1373$ (16)	-9(12)
$\mathrm{H}(91 A)$	0.646 (6)	0.062 (11)	0.0467 (25)	23 (24)
$\mathrm{H}(92 A)$	$0 \cdot 275$ (7)	$0 \cdot 450$ (13)	$0 \cdot 4655$ (29)	65(30)
$\mathrm{H}(93 A)$	0.710 (6)	$0 \cdot 193$ (11)	$0 \cdot 0249$ (26)	39 (24)
$\mathrm{H}(18)$	$0 \cdot 211$ (6)	$0 \cdot 133$ (11)	$0 \cdot 4075$ (25)	47(26)
$\mathrm{H}(21 B)$	$0 \cdot 204$ (4)	0.030 (8)	$0 \cdot 4866$ (18)	-19(15)
$\mathrm{H}(22 B)$	$0 \cdot 888$ (7)	$0 \cdot 526$ (14)	-0.004 (3)	70 (35)
$\mathrm{H}(8 B)$	0.702 (5)	$0 \cdot 203$ (9)	$0 \cdot 3064$ (19)	10(17)
$\mathrm{H}(91 B)$	0.645 (6)	$0 \cdot 110$ (11)	$0 \cdot 3823$ (24)) 22 (24)
$\mathrm{H}(92 \mathrm{~B})$	0.315 (8)	0.443 (14)	$0 \cdot 104$ (3)	83 (35)
$\mathrm{H}(93 B)$	0.718	$0 \cdot 165$	$0 \cdot 427$	60
H(51)	$0 \cdot 313$ (7)	0.437 (12)	$0 \cdot 2592$ (26)	32 (29)
H(52)	$0 \cdot 360$ (6)	$0 \cdot 497$ (11)	$0 \cdot 3012$ (26)	32 (26)
H(61)	0.710	0.450	$0 \cdot 220$	60
H(62)	0.820	$0 \cdot 440$	0.239	60
H(71)	0.067	0.387	$0 \cdot 230$	60
H(72)	0.067	$0 \cdot 387$	0.278	60
H(81)	0.404 (7)	$0 \cdot 323$ (11)	0.0226 (26)	18 (26)
H(82)	0.415 (6)	0.096 (11)	$0 \cdot 4908$ (23)	14 (22)
H(101)	0.390 (7)	$0 \cdot 168$ (11)	$0 \cdot 3961$ (25)	2 (25)
H(102)	0.418 (8)	0.005 (14)	$0 \cdot 404$ (4)	87 (43)

being investigated to determine whether SO_{4}^{2-} will replace Cl^{-}in the coordination sphere or whether the geometry will be analogous to that of the guanine complex.

In the present compound SO_{4}^{2-} does not interact with Cu^{2+} but participates in a strong di-hydrogen bond to guanine. The 'bite' distances between the donors, $\mathrm{N}(1) \cdots \mathrm{N}(2)$, and the acceptors, $\mathrm{O}(1) \cdots \mathrm{O}(2)$,

Table 2. Angles $\left({ }^{\circ}\right)$ around Cu and $\mathrm{S}\left(\sigma=0.2^{\circ}\right.$ and $0 \cdot 3^{\circ}$ respectively)

$\mathrm{O}(5)-\mathrm{Cu}-\mathrm{N}(7 A)$	$93 \cdot 1$
$\mathrm{O}(5)-\mathrm{Cu}-\mathrm{N}(7 B)$	$89 \cdot 3$
$\mathrm{O}(5)-\mathrm{Cu}-\mathrm{O}(6)$	$90 \cdot 2$
$\mathrm{O}(5)-\mathrm{Cu} \mathrm{O}(7)$	$86 \cdot 0$
$\mathrm{O}(6)-\mathrm{Cu}-\mathrm{N}(7 A)$	$88 \cdot 6$
$\mathrm{O}(6)-\mathrm{Cu}-\mathrm{N}(7 B)$	$93 \cdot 7$
$\mathrm{O}(7)-\mathrm{Cu}-\mathrm{N}(7 A)$	$89 \cdot 2$
$\mathrm{O}(7)-\mathrm{Cu}-\mathrm{N}(7 B)$	$88 \cdot 7$
$\mathrm{O}(7)^{\prime}-\mathrm{Cu}-\mathrm{N}(7 A)$	$87 \cdot 8$
$\mathrm{O}(7)^{\prime}-\mathrm{Cu}-\mathrm{N}(7 B)$	$90 \cdot 0$
$\mathrm{O}(7)^{\prime}-\mathrm{Cu}-\mathrm{O}(7)$	$97 \cdot 4$
$\mathrm{O}(7)^{\prime}-\mathrm{Cu}-\mathrm{O}(6)$	$86 \cdot 4$
$\mathrm{O}(5)-\mathrm{Cu}-\mathrm{O}(7)^{\prime}$	$176 \cdot 5$
$\mathrm{O}(9)-\mathrm{Cu}-\mathrm{O}(7)$	$175 \cdot 5$
$\mathrm{~N}(7 A)-\mathrm{Cu}-\mathrm{N}(7 B)$	$176 \cdot 7$
$\mathrm{O}(1)-\mathrm{S}-\mathrm{O}(2)$	$108 \cdot 7$
$\mathrm{O}(1)-\mathrm{S}-\mathrm{O}(3)$	$109 \cdot 9$
$\mathrm{O}(1)-\mathrm{S}-\mathrm{O}(4)$	$108 \cdot 8$
$\mathrm{O}(2)-\mathrm{S}-\mathrm{O}(3)$	$111 \cdot 0$
$\mathrm{O}(2)-\mathrm{S}-\mathrm{O}(4)$	$111 \cdot 0$
$\mathrm{O}(3)-\mathrm{S}-\mathrm{O}(4)$	$107 \cdot 5$

Fig. 1. Interatomic distances and angles in the complex unit. The σ 's in bond lengths are in the range $0.005-0.012 \AA$, and in angles $0 \cdot 2-0 \cdot 6^{\circ}$.
are $2 \cdot 296$ (9) and $2 \cdot 388$ (7) \AA, respectively. This unique H -bond arrangement is probably of importance in determining electrolyte activity on nucleic acids. In this
respect, guanine is different from all other purines and pyrimidines by having two donor groups which are able to establish strong 'bidentate' H -bonds to e.g.

Fig. 2. Stereoscopic drawings of the crystal packing viewed (a) along \mathbf{b} with \mathbf{a} along the interocular line, and (b) along a with b along the interocular line.

Table 3. Hydrogen-bond distances and angles

$D-\mathrm{H} \cdots \cdot A$	Position of acceptor atom			Distance (\AA)		Angle (${ }^{\circ}$)
				$D \cdots A$	$\mathrm{H} \cdots{ }^{\text {a }}$	$D-\mathrm{H}-\mathrm{A}$
$\mathrm{O}(5)-\mathrm{H}(51) \cdots \mathrm{O}(91)$	x,	y,	z	$2 \cdot 700$ (14)	2.06 (9)	146 (6)
$\mathrm{O}(5)-\mathrm{H}(52) \cdots \mathrm{O}(3)$	x,	y	z	$2 \cdot 816$ (8)	2.03 (7)	161 (6)
$\mathrm{O}(7)-\mathrm{H}(71) \cdots \mathrm{O}(6 A)$	x,	y	z	2.640 (7)	1.79	162
$\mathrm{O}(7)-\mathrm{H}(72) \cdots \mathrm{O}(6 B)$	x,	y,	z	$2 \cdot 612$ (6)	1.81	168
$\mathrm{O}(8)-\mathrm{H}(81) \cdots \mathrm{O}(2)$	x,	y,	z	2.871 (10)	$2 \cdot 21$ (8)	158 (7)
$\mathrm{O}(8)-\mathrm{H}(82) \cdots \mathrm{O}(10)$	x,	$\frac{1}{2}-y$,	- $\frac{1}{2}+z$	$2 \cdot 822$ (11)	$2 \cdot 27$ (6)	137 (5)
$\mathrm{O}(10)-\mathrm{H}(101) \cdots \mathrm{O}(3)$	x,	y,	z	2.781 (10)	$2 \cdot 18$ (8)	166 (7)
$\mathrm{O}(10)-\mathrm{H}(102) \cdots \mathrm{O}(4)$	1-x,	$\frac{1}{2}+y$,	$\frac{1}{2}-z$	2.827 (10)	2.00 (10)	165 (7)
$\mathrm{N}(1 A)-\mathrm{H}(1 A) \cdots \cdot \mathrm{O}(1)$	x,	y,	z	2.714 (7)	1.85 (6)	168 (4)
$\mathrm{N}(2 A)-\mathrm{H}(21 A) \cdots \mathrm{O}(2)$	x,	y,	z	2.890 (9)	1.80 (7)	176 (4)
$\mathrm{N}(2 A)-\mathrm{H}(22 A) \cdots \mathrm{N}(3 A)$	1-x,	$-y$,	-z	3.043 (8)	$2 \cdot 32$ (6)	174 (6)
$\mathrm{N}(1 B)-\mathrm{H}(1 B) \cdots \mathrm{O}(10)$	x,	y,	z	$2 \cdot 875$ (10)	1.97 (7)	167 (5)
$\mathrm{N}(2 B)-\mathrm{H}(21 B) \cdots \mathrm{O}(8)$	x,	$\frac{1}{2}-y$,	$\frac{1}{2}+z$	$2 \cdot 820$ (11)	$2 \cdot 13$ (5)	171 (5)
$\mathrm{N}(2 B)-\mathrm{H}(22 B) \cdots \mathrm{N}(3 B)$	$1-x$,	$-y$,	$1-z$	$3 \cdot 100$ (10)	2.31 (10)	162 (7)

Fig. 3. The puckering of the guanine ligands. The scale of the ordinate is expanded relative to the abscissa.
$\mathrm{SO}_{4}^{2-}, \mathrm{NO}_{3}^{-}, \mathrm{ClO}_{4}^{-}$. The influence on the melting temperature of DNA by varying salt concentration is found to be dependent on the base composition (Hamaguchi \& Geiduschek, 1962). However, it is not clear whether the denaturing action of electrolytes is due to effects on the structure of the solvent or due to the breaking of hydrogen bonds between complementary bases.

The formation constants for Cu^{2+} nucleoside complexes are reported to be much larger for guanosine than for adenosine (Fiskin \& Beer, 1965). Comparing adenine and guanine, we find that only the latter has the ability to accommodate a strong intra-purine H -bond bridge via a coordinated water molecule. It is not evi-
dent, however, to what extent different anions in the coordination sphere may alter this H -bond arrangement.

Geometry of the 9-methylguanine ligands

The bond lengths and angles of the two crystallographically independent guanine ligands are given in Fig. 1. The agreement between chemically equivalent dimensions is satisfactory, taking into account the high standard deviations. Any changes in molecular dimensions due to metal binding are expected to be less than the limit of error in this investigation. The guanine rings are appreciably puckered (Fig. 3). In particular the carbonyl and the amino groups exhibit large deviations from the mean molecular planes. The deformation of the two ligands is remarkably similar considering the differences in ionic environment.

Molecular packing and hydrogen bonding

The crystal packing is shown in stereo drawings viewed along b [Fig. 2(a)] and a [Fig. 2(b)]. Hydrogenbond distances and angles are listed in Table 3. The complexes are arranged in an infinite helical chain running along the screw axis. A and B rings are stacked on top of each other with almost identical interplanar distances ($3.27 \AA$) between alternate rings [Fig. 2(b)]. The orientation of A relative to B is such as to leave the carbonyl O almost exactly on top of $\mathrm{N}(7)$ when projected perpendicular to the ring plane.
The two guanine ligands are each hydrogen bonded in centrosymmetrical pairs involving $\mathrm{N}(3)$ and the amino group. Each H-bonded pair is approximately planar. As mentioned above guanine has the rare ability to form di-hydrogen bonds to certain oxy anions. In the present structure ligand A is H -bonded to SO_{4}^{2-} through $\mathrm{N}(1)$ and the amino group, $\mathrm{N}(1)-\mathrm{H}(1) \cdots \mathrm{O}(1)$ $=2.714$ and $\mathrm{N}(2)-\mathrm{H}(21) \cdots \mathrm{O}(2)=2.890 \AA$. The corresponding hydrogen-bond donors on ligand B are not interacting with sulphate, but participate in H -bonding to water molecules $O(10)$ and $O(8)$. The hydrogenbonding network of the disordered water is difficult to clarify.

References

Eichmorn, G. L. \& Shin, Y. A. (1968). J. Amer. Chem. Soc. 90, 7323-7328.
Fiskin, A. M. \& Beer, M. (1965). Biochemistry, 4, 12891294.

Hamaguchi, K. \& Geiduschek, E. P. (1962). J. Amer. Chem. Soc. 84, 1329-1338.

Johnson, C. K. (1970). ORTEP. Oak Ridge National Laboratory Report ORNL-3794.
Maftmann-Moe, K. (1974). Siemens Rev. Vol. XLI 7. Spec. Issue, p. 54.
Sletten, E. (1974). Acta Cryst. B30. 1961-1966.
Sletten, E. \& Ruud, M. (1975). Acta Cryst. B31, 982-985.
Sletten, E. \& Thorstensen, B. (1974). Acta Cryst. B30, 2438-2443.

The Crystal and Molecular Structure of Dipotassium trans-Dicarbonatotetraaquocobalt(II), trans- $\mathrm{K}_{2}\left[\mathrm{Co}\left(\mathrm{CO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$

By R.L.Harlow and S. H.Simonsen
Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, U.S.A.

(Received 27 May 1975; accepted 19 June 1975)

Abstract

The crystal structure of the salt trans $-\mathrm{K}_{2}\left[\mathrm{Co}\left(\mathrm{CO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$ has been determined by single-crystal, X-ray diffraction methods. The crystals are monoclinic, space group $P 2_{1} / n$, with $a=11.450$ (1), $b=6.184$ (1), $c=6.817$ (1) $\AA, \beta=99.46(1)^{\circ}, Z=2$, at $23^{\circ} \mathrm{C}$. At $-40^{\circ} \mathrm{C}$, the temperature at which the intensities were collected, the unit-cell parameters were: $a=11.424$ (1), $b=6.173$ (1), $c=6.809$ (1) $\AA, \beta=$ $99 \cdot 40(1)^{\circ}$. Full-matrix least-squares refinement of 2219 intensities [$I>2 \sigma(I)$] collected by $\theta-2 \theta$ scans on a Syntex $P 2_{1}$ diffractometer (Mo $K \alpha$ radiation) converged at a conventional R of $0 \cdot 024$. All nonhydrogen atoms were refined with anisotropic thermal parameters, H atoms with isotropic parameters. The Co atom (located on a crystallographic inversion center) is octahedrally coordinated with two monodentate carbonate groups to form a trans- $\left[\mathrm{Co}\left(\mathrm{CO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2-}$ complex anion, in agreement with predictions made on the basis of infrared and electronic spectra. The Co-O bond lengths are: Co-O (carbonate) $=2 \cdot 068(1) ; \mathrm{Co}-\mathrm{O}$ (water) $=2 \cdot 121$ (1) and $2 \cdot 130$ (1) \AA. The carbonate group, with $\mathrm{C}-\mathrm{O}$ distances of 1.291 (1), 1.291 (1) and 1.284 (1) \AA, shows almost no distortion from $D_{3 h}$ symmetry. The complex ions are interconnected by a network of hydrogen bonds from the H atoms of the water molecules to the O atoms of the carbonate groups.

Introduction

The infrared spectrum of a carbonatometallate complex may often be used to discern the presence of a bidentate and/or monodentate carbonate ligand. From an analysis of the infrared spectrum, Scott (1967) and Blumentritt (1967) concluded that the title compound contained monodentate carbonate ions. From the electronic spectrum, they additionally deduced that the cobalt atom was octahedrally coordinated, forming a $\left[\mathrm{Co}\left(\mathrm{CO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2-}$ species. The crystal structure was undertaken to verify these predictions, to assist in further correlations between the infrared spectrum and the bonding of the carbonate ion, and to continue our investigation into the distortion (from $D_{3 h}$ symmetry) of the carbonate ion when coordinated to transition metal ions.

Experimental

Crystals of the title compound were prepared according to the method of Reynolds (1898). Preliminary unit-cell parameters and space-group information
were obtained from Weissenberg photographs. The lattice parameters at $23^{\circ} \mathrm{C}$ were refined by the leastsquares method from the Bragg angles of 23 reflections ($135<2 \theta<147^{\circ}, \mathrm{Cu} K \alpha_{1}, \lambda=1.54050 \AA$) measured on a G.E. XRD-5 diffractometer. The lattice parameters at $-40^{\circ} \mathrm{C}$ were refined with 60 low-angle reflections $\left(24<2 \theta<30^{\circ}\right.$, Mo $\left.K \alpha, \quad \lambda=0.71069 \AA\right)$ measured on a Syntex $P 2_{1}$ diffractometer using the Syntex centering routine. Table 1 summarizes the crystal data.

A crystal with dimensions of $0.13 \times 0.15 \times 0.35 \times 0.39$ mm perpendicular to (100), ($10 \overline{\mathrm{I}}$), ($1 \overline{1} 0$) and (110),

Table 1. Crystal data
trans- $\mathrm{K}_{2}\left[\mathrm{Co}\left(\mathrm{CO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{4}$, F.W. 329-2
Monoclinic, $P 2_{1} / n, Z=2$

	at $23{ }^{\circ} \mathrm{C}$	at $-40^{\circ} \mathrm{C}$
a	$11 \cdot 450$ (1) \AA	11.424 (1) \AA
b	$6 \cdot 184$ (1)	$6 \cdot 173$ (1)
c	$6 \cdot 817$ (1)	6.809 (1)
β	$99 \cdot 46$ (1)	99.40 (1) ${ }^{\circ}$
V	$476.1 \AA^{3}$	$473.7 \AA^{3}$
D_{m}	$2.293 \mathrm{~g} \mathrm{~cm}^{-3}$	
D_{x}	$2 \cdot 296$	

[^0]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31224 (22 pp., 1 microfiche). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

